

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur

Syllabus (2022-23)

Under CBCS

Two Year Post Graduate Program in

Computer Science

Department of Computer Science

M. Sc. (Computer Science)

Syllabi Approved by the Board of Studies in Computer Science with effect from June, 2022

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science Curriculum Structure with effect from June, 2022 M. Sc. (Computer Science) First Year Semester I & II

	Course	Lectures Marks					
	Code	Course little	Per week	Total	C.C.E.	E.S.E	Credits
emester - I	P-DAA-126	Design and Analysis of Algorithm	4	60	40	60	4
	P-CSA-127	Computer System Architecture	4	60	40	60	4
	P-OUP-128	Object oriented Programming Using Python	4	60	40	60	4
	P-MAD-129	Mobile Application Development	4	60	40	60	4
	P-LAC-130	Lab. Course – I	3	30	20	30	2
	P-LAC-131	Lab. Course – II	3	30	20	30	2
	P-LAC-132	Lab. Course – III	3	30	20	30	2
	P-LAC-133	Lab. Course – IV	3	30	20	30	2
	P-SEM-134	Seminar - I			25		1
		Total			62	25	25

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science Curriculum Structure with effect from June, 2022 M. Sc. (Computer Science) First Year Semester I & II

			Lectures		Marks		
	Course Code	Course Title	Per wee k	Total	C.E.	E.S.E	Credits
	P-ADB-225	Advanced DBMS	4	60	40	60	4
	P-COD-226	Compiler design	4	60	40	60	4
II	P-WPR-227	Web Programming	4	60	40	60	4
Semester -	P-INT-228	Internet Of Things	4	60	40	60	4
	P-LAC-229	Lab. Course -V	3	30	20	30	2
	P-LAC-230	Lab. Course -VI	3	30	20	30	2
	P-LAC-231	Lab. Course -VII	3	30	20	30	2
	P-LAC-233	Lab. Course -VIII	3	30	20	30	2
	P-SEM-234	Seminar - II			25		1
		Total			62	25	25

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science Curriculum Structure with effect from June, 2023 M. Sc. (Computer Science) Second Year Semester III & IV

	Course		Lec	tures	Ma	rks		
	Code	Course Title	Per week	Total	C.C.E.	E.S.E	Credits	
	P-WPD-328	Web Development using PHP	4	60	40	60	4	
	P-LIA-329	LINUX Administration	4	60	40	60	4	
	P-SOE-330	Software Engineering	4	60	40	60	4	
		Choose any one fr	om the	following	Elective Co	ourses		
Π	P-DIP-331-I	Digital Image Processing	4	60	40	60	4	
ter - I	P-COG-331- II	Computer Graphics	4	60	40	60	4	
emes	P-ARI-331- III	Artificial Intelligence	4	60	40	60	4	
S	Practical Courses							
	P-LAC-332	Lab-Course V	3	30	20	30	2	
	P-LAC-333	Lab-Course VI	3	30	20	30	2	
	P-LAC-334	Lab-Course VII	3	30	20	30	2	
		Mini Project	2	30	20	30	2	
	P-SEM-383	Seminar - III			25		1	
		Total			62	25	25	

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science Curriculum Structure with effect from June, 2023 M. Sc. (Computer Science) Second Year Semester III & IV

	Course		Lec	tures	Ma	'ks			
	Code	Course Title	Per week	Total	C.C.E.	E.S.E	Credits		
	P-BIA-426	Big Data Analysis	4	60	40	60	4		
	P-AJP-427	Advanced Java Programming	4	60	40	60	4		
	P-CLC-428	Cloud Computing	4	60	40	60	4		
	Choose any one from the following Elective Courses								
- IV	P-INS-429-I	Information Security	4	60	40	60	4		
esteı	P-SOC-429-II	Soft Computing	4	60	40	60	4		
Semo	P-PAR- 429- III	Pattern Recognition	4	60	40	60	4		
	Practical Courses								
	P-LAC-430	Lab-Course VIII	3	30	20	30	2		
-	P-LAC-431	Lab-Course IX	3	30	20	30	2		
		Project	3	30	40	60	4		
	P-SEM-477	Seminar – IV			25		1		
		Total			62	25	25		

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) First Year Semester I Course Title: Design and Analysis of Algorithm Course Code: P-DAA-126 Total Lectures: 60 Max. Marks: 100

Learning Objectives:

- > To analyze performance of algorithms.
- To choose the appropriate data structure and algorithm design method for a specified application.
- To solve problems using algorithm design methods such as the greedy method, divide and conquer, dynamic programming, backtracking and branch and bound.
- > To understand & implement tractable and intractable problems.

- > Learn good principles of algorithm design.
- > Learn how to analyze algorithms and estimate their complexity.
- > Implement fundamental data structures.
- Become accustomed to the description of algorithms in both functional and procedural ways.
- > Apply their theoretical knowledge in practice (Via the practical component of the course).

Unit No.	Contents	No. of Lect.
Unit I Introduction & Overview of Data Structure	A simple example of design using insertion sort, pseudo code for insertion sort, time complexity. Performance Analysis – Space complexity and Time complexity (posteriori testing, and priory approach), Asymptotic Notations (O, Ω, Θ), Examples on Asymptotic Notations, Polynomial vs. Exponential Algorithms.	15 Lectures
	Average, Best- and Worst-case complexity. Arrays, Linked List, Stack, Queue, Trees & Graphs	
UNIT II: Divide and Conquer Algorithms, Greedy Algorithms	Introduction to Divide and Conquer Algorithms, Binary Search, Finding the Maximum and Minimum, Merge- Sort, Quick sort, Strassen's Matrix Multiplication. Introduction to Greedy Algorithms – Fractional Knapsack problem, Minimum cost spanning trees, Kruskal's Algorithm and Prim's Algorithm, Optimal Merge Patterns, Single-Source Shortest Paths.	15 Lectures
UNIT III: Dynamic Programming, Back Tracking and Branch	Dynamic Programming Definition – Multistage Graphs, All-pairs shortest paths, Single-Source Shortest Paths, Optimal Binary search Trees, Traveling salesman problem	15 Lectures

&Bound	Back tracking and Branch and Bound Algorithms Introduction: 8-	
Algorithms	Queens Problem, Sum of Subsets problem using Back tracking	
	algorithms. Traveling Salesman problem.	
UNIT IV: Lower	Lower bound Theory – A brief introduction to comparison trees,	15
bound Theory	Ordered Searching, Sorting & Selections.	Lectures
	Lower bounds through reductions, techniques for algebraic	
	problems. Introduction to NP-hard and NP-Complete Problems	

- 1. Horowitz, Sahni, "Fundamentals of Computer Algorithms" Galgotia Publications, 1996.
- 2. Donald E. Knuth, "The Art of Computer Programming" Volume 3, Sorting and Searching, Second Edition, Pearson Education.
- 3. Richard F. Gilberg, Behrouz A, Forouzan "Data structures A Pseudocode Approach with C".

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) First Year Semester I Course Title: Computer System Architecture Course Code: P-CSA-127 Credits: 4 Total Lectures: 60 Max. Marks: 100

Learning Objectives:

- > To understand the structure, function of computer systems
- The emphasis is on studying and analyzing fundamental issues in architecture design and their impact on performance.
- > To acquire the basic knowledge of microprocessor and application to understand electronics circuits.
- > To identify the elements of instruction sets and their impact on processor Design
- > To perform the analysis and design of various combinational and sequential logic circuits

- Explain the basics of architectural issues of a digital computer and classify and compute the performance of machines, Machine Instructions.
- Analyze the performance of various classes of Memories, build large memories using small memories for better performance and analyze arithmetic for ALU implementation
- Understand and examine the structure of various microprocessor and its application in real world.
- > Understand the basics of hardwired and micro-programmed control of the CPU
- > Develop assembly language programs using various programming tools

Unit No.	Contents				
Unit L. Docign	Introduction to Design Mathedology	15			
Mathadalamaad	The Cate Level Combined in a laise its Comparison its	15			
Methodology and	The Gate Level- Combinational circuits, Sequential circuits,	Lectures			
Processor Design	The Register level - Register level components, design				
	methods				
	The Processor level - components, design techniques				
	Queuing models.				
	Introduction to Processor Design Instruction sets Fixed				
	Doint Arithmatic ALU Dasign				
	Politi Al tilliletic, ALO Design.				
Unit II: Control	General model of control unit, Hardwired control unit, Micro-	15			
Design and	programmed control unit, Micro-programmed Computers.	Lectures			
Memory	Memory Technology - Memory Device Characteristics,				
Organization	Random Access Memories, Serial Access Memories.				
	Virtual Memory - Memory Hierarchies, Main Memory				
	Allocation, Segments, Pages & Files				
	High Speed Memories- Interleaved memories, Caches and				
	Associative memories.				

Unit III: Introduction to Microprocessor 8085	Introduction to Microprocessor 8085, Instruction Cycle, Timing Diagram, RISC and CICS processors. Instruction set - Instruction and data formats, addressing modes, Intel 8085 Instructions, Assembly Language Programming	15 Lectures
Unit IV: Introduction to Other Microprocessors & Peripheral Devices	Features of Intel 8086, Architecture of Intel 8086, Functional Pin Diagram of Intel 8086, Addressing Modes of Intel 8086, Instruction Set of Intel 8086, Assembly Language Programming of 8086, Introduction to 80386 Microprocessor, Features of 80836, Architecture of 80836. Address space partitioning, memory & I/O Interfacing, Interfacing Devices & I/O Devices.	15 Lectures

- Computer Architecture & Organization -John. P. Hayes (MGH II Edition)
 Fundamentals of Microprocessors & Microcomputers Badri Ram (Dhanpat Rai Publications (P) Ltd. Fourth Revised & Enlarged Edition)

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur
Department of Computer ScienceM. Sc. (Computer Science) First Year Semester I
Course Title: Object Oriented Programming Using PythonCourse Code: P-OUP-128Credits: 4Total Lectures: 60Max. Marks: 100

Learning Objectives:

- > To understand how to write program in Python.
- > To learn how to use lists, tuples, and dictionaries in Python programs.
- > To learn how to build and package Python modules for reusability.
- > To learn how to design object-oriented programs with Python classes.
- > To learn how to read and write files in Python.
- > To implement inheritance, exception handling & RegEx in Python.
- > To learn create GUI application using Python

- > Implement programming skills in core Python.
- > Apply Object Oriented Skills in Python
- > Design & develop application with Graphical User Interfaces in Python
- Use the ability to handle exceptions, write regular expression & database applications in Python

Unit No.	Contents	No. of Lect.
Unit I: Introduction& Working with Python	Installation and Working with Python, Understanding Python variables, Python Shell, Python IDLE, Different Python IDEs (VS-Code, Py-charm, Sub-lime text etc) Python Data types, Python Operators, Python blocks Control & looping Statements Built in methods/functions on: String, List, Tuples, Dictionary Functions, Modules in Python, organizing Python projects into modules, importing own module as well as external modules, Understanding Packages, Powerful Lambda function in Python, Modules: The from import statement, A module's name, Making your own modules, The dir function, packages. Brief Tour of the Standard Library: math, date time, turtle, NumPy, SciPy, Panda.	15 Lectures
Unit II: OOPs Concept, & File Handling in Python	Concept of class-object/instance, Constructor & its types, Destructor in Python, Types of Variables: Instance Variable, Class Variables, Static Variables, Types of Methods: Instance Method, Class Method, Static Method, Passing Members of One class to Another Class, inner class.	15 Lectures

	Inheritance: Single, Multiple, Multilevel, Hierarchical, Hybrid, Python Constructor in Inheritance, Constructor/ Method Overriding, Method Overloading, Operator Overloading Abstract Classes & Interfaces: Abstract Method & Class, Interfaces in Python, Abstract Class Vs Interface File Handling in Python: Types of Files, Reading, Writing Files using Python, With Statement. Understanding read functions, read (), readline() and readlines(), Understanding write functions, write() and writelines(), Manipulating file pointer using seek, Programming using file operations.	
Unit III Graphical	GUI in Python, The Root Window, Fonts and Colors, Working	15
User Interface in	with Containers, Canvas, Frame, Widgets, Button Widgets,	Lectures
Python	arranging widgets in the Frame, Label, Widget, Message	
	Widget, Text Widget, Sciolidal Widget, Checkbulloll Widget, RadioButton Widget Entry Widget Spinboy Widget ListBoy	
	widget Menu Widget Creating Tables	
Unit IV: Python	Powerful pattern matching and searching. Power of pattern	15
Regular	searching using regex in Python. Real time parsing of	Lectures
Expression,	networking or system data using regex, Password, email,	
Exception	URL validation using regular expression, Pattern finding	
Handling &	programs using regular expression,	
Database	Exception Handling: Avoiding code break using exception	
Interaction	handling, Safe guarding file operation using exception	
	handling, Handling and helping developer with error code,	
	Programming using Exception handling,	
	Database Connection: SQL Database connection using	
	Python, Creating and searching tables, Reading and storing	
	config information on database, Programming using	
	database connections.	

1. Core Python Programming- Dr. R Nageswara Rao (Dreamtech Press)

2. Learning Python- Mark Lutz, O'Reilly, 5th edition.

3. Starting Out with Python plus My Programming Lab- Tony Gaddis, Pearson

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) First Year Semester I Course Title: Mobile Application Development Course Code: P-MAD-129 Total Lectures: 60 Max. Marks: 100

Learning Objectives:

- > To learn Kotlin Programming Language
- > To use Kotlin Programming Language for the development of Android Applications
- > To Learn Kuddo & Nutrilicious App for development
- Use of DSLs for complex Application Development

- > Describe the basic concepts and principles to develop the mobile application
- > Develop the Android Applications using Kotlin Programming Language.
- Develop Kuddo & Nutrlicious App using Android Studio
- Develop the complex Application Development

Unit No.	Contents	No. of Lect
Unit I Learning &	Introducing Kotlin, Diving into Kotlin-Variables & datatypes	15
Diving into Kotlin	Conditional Code Loops & Ranges Functions Null Safety m	Lectures
	Equality Checks Excention Handling	Leetuies
	Purpose of Functional programming Functions Working	
	with Collections. Scoping Functions. Lazy Sequences.	
Unit II	Classes & Object Instantiation. Properties. Method. Primary	15
Object Orientation	& Secondary Constructors. Inheritance & Overriding rules.	Lectures
in Kotlin &	Type Checking & Casting, Visibilities,	
Interoperability	Data classes, Enumerations, Objects & Companions,	
with JAVA	Generics.	
	Interoperability with JAVA – Using JAVA Code from Kotlin,	
	Using Kotlin Code from JAVA, Best Practices for	
	Interoperability.	
Unit III Android	Setting up Kotlin for Android, using Kotlin in Android Studio,	20
App Development	Autogenerated Gradle Configuration, adapting your Gradle	Lectures
with Kotlin:	Configuration using Annotation Processors, Converting java	
Kudoo App,	code to Kotlin.	
Nutrilicious	Kuddo, a To Do List App: Creating the project, Adding the	
	Recycler View, adding a Room Data Base, using a View Model,	
	Integrating Livedata, Adding New To-Do Items, Enabling	
	Checking off To Do items	
	Nutrilicious: Setting up the Project, Adding RecyclerView to	
	the home screen, Fetching Data from the USDA nutrition API,	
	Mapping JSON Data to Domain Classes, Introducing	
	ViewModel for Search, letting users search Foods, Store	
	user's favorite foods in room database,	
UNIT IV	Introducing DSLs, creating a DSL in Kotlin, DSL for Android	10
	Layouts with Anko, DSL for Gradle Build Scripts	Lectures

- 1. "Kotlin for Android App Development", Peter Sommerhoff, Pearson Publication
- 2. Android Programming with Kotlin for Beginners: Build Android apps starting from zero programming experience with the new Kotlin programming language John Horton (Packt)

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) First Year Semester I Course Title: Design and analysis of algorithm Course Code: P-LAC-130 Total Lectures: 45 Max. Marks: 50

Learning Objectives:

- > To analyze performance of algorithms.
- To choose the appropriate data structure and algorithm design method for a specified application.
- To solve problems using algorithm design methods such as the greedy method, divide and conquer, dynamic programming, backtracking and branch and bound.
- > To understand & implement tractable and intractable problems.

Course Outcomes: After completion of this course students will be able to:

- > Learn good principles of algorithm design.
- > Learn how to analyze algorithms and estimate their complexity.
- > Implement fundamental data structures.
- Become accustomed to the description of algorithms in both functional and procedural ways.
- > Apply their theoretical knowledge in practice (Via the practical component of the course).

- 1. Program in Python to implement Quick sort algorithm for sorting a list of integers in ascending order
- 2. Program in Python to implement Merge sort algorithm for sorting a list of integers in ascending order.
- 3. Program in Python to implement Bubble Sort algorithm
- 4. Program in Python to implement sorting of numbers in ascending and Descending order
- 5. Program in Python to implement greedy algorithm for job sequencing with deadlines
- 6. Program in Python to implement the DFS algorithm for a graph.
- 7. Program in Python to implement the BFA algorithm for a graph.
- 8. Program in Python to implement Binary Search with Divide and conquer approach.
- 9. Program in Python to multiply matrix using Strassen's matrix multiplication.
- 10. Program in Python to implement backtracking algorithm for the 8-queens problem.
- 11. Program in Python to implement the backtracking algorithm for the sum of subsets problem.
- 12. Program in Python to implements Prim's algorithm to generate minimum cost spanning tree.
- 13. Program in Python to Kruskal's algorithm to generate minimum cost spanning tree
- 14. Program in Python to implement Dynamic Programming algorithm for the 0/1 Knapsack problem.

15. Program in Python to implement Dynamic Programming algorithm for the Optimal Binary Search Tree Problem

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) First Year Semester I Course Title: Computer System Architecture Course Code: P-LAC-131 Total Lectures: 45 Max. Marks: 50

Learning Objectives:

- > To understand the structure, function of computer systems
- The emphasis is on studying and analyzing fundamental issues in architecture design and their impact on performance.
- > To acquire the basic knowledge of microprocessor and application to understand electronics circuits.
- > To identify the elements of instruction sets and their impact on processor Design
- > To perform the analysis and design of various combinational and sequential logic circuits

Course Outcomes: After completion of this course students will be able to

- Explain the basics of architectural issues of a digital computer and classify and compute the performance of machines, Machine Instructions.
- Analyze the performance of various classes of Memories, build large memories using small memories for better performance and analyze arithmetic for ALU implementation
- Understand and examine the structure of various microprocessor and its application in real world.
- > Understand the basics of hardwired and micro-programmed control of the CPU
- > Develop assembly language programs using various programming tools

- 1. To perform and verify the truth tables of basic gates and derived gates
- 2. To perform and verify the truth table of half adder and half subtractor
- 3. To perform and verify the truth table of multiplexer
- 4. To perform and verify the truth table of demultiplexer
- 5. To perform and verify the truth table of encoder
- 6. To perform and verify the truth table of decoder
- 7. Write an ALP for addition & subtraction of two 8-bit ,16-bit numbers
- 8. Write an ALP for multiplication & division of two 8-bit ,16-bit numbers
- 9. Write an ALP to find smallest & largest number from array for 8086
- 10. Write an ALP to find square from lookup table
- 11. Write an ALP to find one's complement & two's complement of 8-bit number & 16- bit number.
- 12. Write an ALP to shift an 8-bit number left by one bit.
- 13. Write an ALP to shift an 8-bit number left by two bits.
- 14. Write an ALP to find square root of a number.
- 15. Write an ALP to find multibyte addition.

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) First Year Semester I Course Title: Object Oriented Programming Using Python Course Code: P-LAC-132 Total Lectures: 45 Max. Marks: 50

Learning Objectives:

- > To understand how to write program in Python.
- > To learn how to use lists, tuples, and dictionaries in Python programs.
- > To learn how to build and package Python modules for reusability.
- > To learn how to design object-oriented programs with Python classes.
- > To learn how to read and write files in Python.
- > To implement inheritance, exception handling & RegEx in Python.
- > To learn create GUI application using Python

Course Outcomes: After completion of this course students will be able to

- > Implement programming skills in core Python.
- > Apply Object Oriented Skills in Python
- > Design & develop application with Graphical User Interfaces in Python
- Use the ability to handle exceptions, write regular expression & database applications in Python

Practical List

- 1. Study of Datatypes in Python
- 2. Study of Control /Looping statements
- 3. Study of Functions in Python
 - a. Variables-Local Global
 - b. Type of Arguments
- 4. Study of Modules & Packages
 - a. Create & Rename Modules
 - b. Create Package
- 5. Study of Lambda Function
- 6. Study of List & Dictionary Manipulation
 - a. List Methods
 - b. Dictionary Methods
- 7. Study of Constructor, Destructor in Python
 - a. Simple Class & Object
 - b. Constructor & its types
 - c. Destructor
- 8. Study of types of variables & methods in class
- 9. Study of Inheritance & its types
 - a. Single
 - b. Multiple
 - c. Multilevel

- d. Hierarchical
- e. Hybrid
- 10. Study of Constructor & Method Overriding
- 11. Study of Method & Operator Overloading
- 12. Study of Database Connectivity
 - a. Testing MySQL Database connection & Creating Cursor
 - b. Create Database, Tables & Insert, Read records from it
 - c. Update, Delete Records from MySQL Database using Python
 - d. Parameterized Query
- 13. Any Five Program To implement GUI using tkinter

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) First Year Semester I Course Title: Mobile Application Development Course Code: P-MAD-133 Credits: 2 Total Lectures: 45 Max. Marks: 50

Learning Objectives:

- > To learn Kotlin Programming Language
- > To use Kotlin Programming Language for the development of Android Applications
- > To Learn Kuddo & Nutrilicious Tools for development of Applications
- Use of DSLs for complex Application Development

Course Outcomes: After completion of this course students will be able to

- > Describe the basic concepts and principles to develop the mobile application
- > Develop the Android Applications using Kotlin Programming Language.
- > Use Kuddo & Nutrlicious tool for the development of Android App
- > Develop the complex Application Development

Practical List

- 1. Implement the program of mutable and Read only variables
- 2. Implement the program of Conditional statement in Kotlin and Construct Looping statements in Kotlin (While & For Loop)
- 3. Declaring and calling a simple and extension function in Kotlin
- 4. Implement the Nullable and Non nullable types and accessing members of nullable variables in Kotlin
- 5. Implement exception handling using try, catch, finally block
- 6. Implement the program of Inheritance and Data class in Kotlin
- 7. Implement the program of classes and objects in Kotlin and also implement the program of constructers in Kotlin (Primary and Secondary)
- 8. Create a Kuddo App To do List in Android Studio
- 9. Create a Nutrilicious App in Android Studio
- 10. Create Anko Layouts over hard Layouts using Kotlin in Android Studio
- 11. Create Weather forecasting application using Kotlin in Android Studio
- 12. Create a paint and calculator application using Kotlin in android studio
- 13. Create Quiz Application using Kotlin in Android Studio
- 14. Build a Planet app using Kotlin in Android Studio
- 15. Create a chatting Application using Kotlin in Android Studio

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) First Year Semester I

Seminar I

Course Code: P-SEM-134

Credits: 2

Max. Marks: 25

Learning Objectives:

- > To expand the subject knowledge
- > To Improve the communication & Presentation skills

Course Outcomes: After completion of this course students will be able to

- > Express their knowledge on the given topic in a well manner
- > Present information in a compelling, well-structured, and in a logical sequence.

Steps to Complete the Seminar

- 1. Allotment of Seminar Topic
- 2. Preparation of Presentation & Delivery of Seminar (Minimum 30 Minutes)
- 3. Preparation of Seminar Report
- 4. Final Presentation & Submission of Seminar Report

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) First Year Question Paper Pattern for Semester I & II With effect from June 2022

Note: All questions are compulsory.

Q. 1 Answer any three of the following questions (Each 5 Marks) 15

- a. Question from Unit I
- b. Question from Unit II
- c. Question from Unit III
- d. Question from Unit IV

Q. 2 Answer any three of the following questions (Each 10 Marks) 30

- a. Question from Unit I
- b. Question from Unit II
- c. Question from Unit III
- d. Question from Unit IV

Q.3 Write short notes on any three of the following (Each 5 Marks) 15

a.

- b.
- c.
- d.

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) First Year Semester II Course Title: Advanced DBMS Course Code: P-ADB-225 Credits: 4

Max. Marks: 100

Learning Objectives:

Total Lectures: 60

- > To impart the concepts of Distributed and Centralized Databases.
- > To enable with the principles of Query transformation and Optimization techniques.
- > To nurture with precepts of transaction management in distributed database.
- > To discuss the concurrency control concepts in distributed systems.
- To familiarize the basics concepts of reliability and inconsistency problems of distributed database systems

- > Solve transforming a global query into local query using optimizing techniques.
- Summarize the distributed transaction management principles.
- > Explain various distributed concurrency control techniques.
- Evaluate the Non-blocking Commitment Protocols

Unit No.	Contents	No. of Lect.
Unit I	Structure of Relational Database, Database Schema, Keys,	15
Relational	Schema Diagrams, Relational Operations, Relational Algebra,	Lectures
Databases	Tuple Relational Calculus, Domain Relational Calculus.	
	Overview of the design Process, Entity Relationship Model,	
	Intraradical states, Removing Redundant attributes in entity	
	sets, E-R Diagram, Entity Relationship Design Issues	
	Intermediate and Advanced SQL	
Unit II	Measures of Query Cost, Selection Operation, Sorting, Join	15
Query Processing	Operations, Other Operations	Lectures
and Optimization	Transformation of Relational Expressions, Estimating	
	statistics of expression results, choice of evaluation plan,	
	Materialized views, advanced topics in Query optimization.	
Unit III	Transaction concept, simple transaction model, Storage	15
Transaction	Structure, Transaction Atomicity and durability, Transaction	Lectures
Management and	isolation, Serializability, Transaction isolation and atomicity,	
Concurrency	Transaction isolation level and implementation,	
Control	Transactions as SQL Statements	
	Lock based Protocol, Deadlock handling, Time stamp-based	
	protocol, Validation based protocol	
Unit IV	Data base system architecture-centralized and client server	10
System	architecture, Server system architecture, Parallel System	Lectures
Architecture	and distributed systems	
	I/O Parallelism, interquery Parallelism, Intraquery	
	Parallelism, Intraoperation Parallelism, Interoperation	
	Parallelism	

Homogeneous and Heterogeneous databases, Distributed	
data storage, Distributed transactions, commit protocols,	
Concurrency control and distributed databases, Distributed	
query processing	

- 1. Database system Concepts, Abrahan Silberschatz, Henry F. Korth, S. Sudarshan, Mc Graw Hills Publication
- 2. An Introduction to Database Systems, Bipin C. Desai, Galgotia Publications

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) First Year Semester II Course Title: Compiler Design

Course Code: P-COD-226	Credits: 4
Total Lectures: 60	Max. Marks: 100

Learning Objectives:

- To get working knowledge of the major phases of compilation, like lexical analysis, parsing, semantic analysis and code generation.
- To use the formal attributed grammars for specifying the syntax and semantics of programming languages.
- To understand the structure of a compiler, and how the source and target languages influence various choices in the design
- > To learn and use tools for compiler construction.

- > To solve problem of parsing and compiling.
- > Design and develop simple compiler.
- > Use compiler tools in basic, concurrent, distributed and embedded environments.
- ➤ Generate and optimize the code.

Unit No.	Contents	No. of
		Lect.
UNIT I:	Compilers and Translators, The Structure of Compiler,	18
Introduction to	Lexical Analysis, Syntax Analysis, Intermediate Code	Lectures
Compilers and	generation, Optimization, Code Generation, Bookkeeping,	
Lexical Analysis	Error Handling, Compiler writing Tools,	
	Programming Language Basics: Definition, The lexical and Syntactic structure of a language, data elements, data structures, operators, assignment, statements, program units, data environments, parameter transmission, storage management Lexical Analysis: Role of Lexical Analyzer, A simple approach to the design of Lexical Analyzers, Regular Expressions, Finite Automata, from regular expressions to finite automata, Minimizing the number of states of a DFA, A language specifying lexical analyzers, Implementation of a lexical analyzer, The scanner generator as Swiss army knife	
UNIT II: Syntax	Context free grammars, Derivations and Parse Trees,	12
Analysis and	Capabilities of Role of Context free grammars, Parser, shift	Lectures
Parsing	reduce parsing, Operator Precedence Parsing, top-down	
Techniques	parsing, Predictive parsers – Computation of FIRST &	
	FOLLOW functions and construction of parsing table, LR	
	parsers, the canonical collection of LR (O) items,	
	Constructing LALR parser tables, Using Ambiguous	
	Grammars, An Automatic parser Generator, Implementation	
	of LR parsing tables, Constructing LALR sets of items	

UNIT III: Syntay	Syntax-Directed Translation schemes Implementation of	15
Diverse d	Syntax-Directed franslation schemes, implementation of	15 Leaturea
Directed	syntax-directed translators, intermediate code, Postfix	Lectures
Translation and	notations, parser trees and syntax trees, three address codes	
Symbol Table	– Quadruples and triples, indirect triples, Translation of	
-	assignment statements. Boolean expressions. Statements	
	that alter the flow of control Postfix translations Translation	
	with a top down parcor	
	Symbol lables: The Contents of Symbol lable, Data	
	Structures for a Symbol Tables, Representing scope	
	information	
UNIT IV: Code	The principal sources of optimization, loop optimization -	15
Optimization and	Basic blocks, flow graphs, loops, code motion, induction	Lectures
Code Generation	variables, The DAG representation of basic blocks-	
	Application of DAGs, Value Numbers and Algebraic Laws,	
	Global Data Flow Analysis-Data Flow equations, Solving Data	
	Flow equations.	
	Object programs: the environment of code, generator, run-	
	time addresses for names. Problems in code generation. A	
	maching model a simple code generator. Register allocation	
	machine model, a simple code generator, Register anotation	
	and assignments, code generation from DAG's, Peephole	
	optimization.	
	Introduction to Errors, Lexical Phase Errors, Syntactic Phase	
	Errors, Semantic Phase Errors	

- 1. Principles of Compiler Design Alfred V.Aho, Jeffey D. Ullman (Narosa Publishing House)
- 2. Compiler Construction Principles & Practices D. M. Dhamdhere,
- 3. Compilers Principles, Techniques and Tools Alfred V. Aho Second Edition (Pearson Education)

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) First Year Semester II Course Title: Web Programming Course Code: P-WPR-227 Credits: 4 Total Lectures: 60 Max. Marks: 100

Learning Objectives:

- > ASP.NET helps students to create their own web applications.
- > To design & develop static and dynamic websites.
- > To develop web application with validation controls
- > To train the students in creating dynamic web pages using ASP.NET.
- > To facilitate the students, develop real time applications using database.

- > Develop web pages using HTML, CSS and JavaScript.
- > Create a Web form with server controls.
- Separate page code from content by using code-behind pages, page controls, and components.
- > Display dynamic data from a data source by using Microsoft ADO.NET and data binding.
- > Build web applications using ASP.NET and MySQL database / MS-Access.

Unit No.	Contents	No. of Loct
Unit-I: Introduction to Web Technology & Asp.net	Web Support Languages, Types of .net Application: web, Desktop, Mobile, Role of Web Browser and Web Server Understanding HTTP, LAN, WAN, Client side and Server- side Scripting, Introduction to Ajax and WCF, Introduction to .net, .net Framework, Installing visual studio.net, Asp Vs Asp.net, Asp.net Web page life cycle, Asp.net Web form, Directive	15 Lectures
Unit-II: Asp.net Applications, CSS and Themes	Creating Asp.net Web Application, Auto Post back property, HTML controls Vs Web controls, Code Window & Design Window, Server-Side controls, Exception Handling, what is CSS? Types of CSS, Theme, Name skin within a Theme.	15 Lectures
Unit-III: Redirecting User to Another Page & Master Pages	Redirecting Options: Response.Redirect, Server.Transfer, Cross Page Post back, Passing Values between pages, Introduction to Master Page, Content Place Holder and Content tags, Accessing Controls of Master page in Content page, Master page with Menus.	15 Lectures
Unit-IV: User Controls,	Creating User Control, Required Field Validator, Compare Validator, Range Validator, Regular Expression Validator,	15 Lectures

Validation, State	Custom Validator, Query String, State Management, Hidden	
Management and	Field, Cookies, Session, Creating Web Services, Web	
Web Services	Methods, Database Oriented Asp.net, ADO.NET data access,	
	Data Binding, Web Application with Grid View, Data List,	
	Data Grid, Repeater.	

- 1. ASP.NET the Complete Reference: Matthew Macdonald
- 2. Mastering Asp.net, BPB Publication, Russel.
- 3. Asp.net 4.0 Black Book

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur
Department of Computer ScienceDepartment of Computer ScienceM. Sc. (Computer Science) First Year Semester II
Course Title: Internet of ThingsCourse Code: P-INT-228Credits: 4Total Lectures: 60Max. Marks: 100

Learning Objectives:

- > To introduce the concepts of Internet of Things.
- > To impart the knowledge on IoT application areas.
- To introduce the IoT business process models, design technology for Connected Devices.
- To enable the students, learn the effective usage of device connectivity and web connectivity models.

- > Demonstrate the need of IoT in the computing world.
- > Identify the Business Process models of IoT.
- > Analyze the data storage and acquisition mechanisms for real time applications.
- Design IoT based prototypes.

Unit No.	Contents	No. of Lect.
Unit-I:	Definition and characteristics of IoT. Sensing, Actuation,	15
Introduction	Networking basics, Sensor Network. Physical Design of IoT,	Lectures
Internet of Things	Things in IoT, IoT Protocols Logical Design of IoT- IoT	
	functional blocks, IoT communication models, IoT enabling	
	Technologies-Wireless sensor networks, cloud computing,	
	big data analytics, communication protocols, embedded	
	systems IoT Levels and deployment templates- IoT Level1 to	
	IoT Level6.	
Unit-II: Domain	Introduction	15
Specific IoTs and	Home automation- Smart lighting, smart appliances,	Lectures
IOT vs M2M	intrusion detection, smoke or gas detectors Cities-Smart	
	parking, smart lighting, smart roads, structural help	
	monitoring, surveillance, emergency response	
	Environment -Weather monitoring, Air pollution	
	monitoring, forest fire detection, river flood detection	
	Retail - Inventory management, smart payments, smart	
	vending machines Logistics- Route generation and	
	scheduling, fleet tracking, ship monitoring, remote vehicle	
	diagnostic Agriculture - smart irrigation, green house	
	control Industry - machine diagnostic, prognosis, indoor air	
	quality monitoring Health and Lifestyle.	
	IOT vs M2M: - M2M, Difference between IoT and M2M,	
	Difference between SDN and NFV for IoT- software defined	

Unit-III: IoT Design Methodology	networking and network function virtualization, IoT Code generator. An emerging industrial structure for IOT, Use case example. Purpose and requirement specification, Process specification, Domain model specification Information model specification, Service specification, IoT level specification, Functional View specification, Operational View specification Device and component integration, Application Development with Python, Case Study on IoT System for weather monitoring.	15 Lectures
Unit-IV: Developing IoT Solutions.	What is an IoT Device?, Raspberry Pi Interfaces, Programming Raspberry Pi with Python, Other IoT Devices, IoT Physical Servers on Cloud Offering, Amazon Web Services for IoT, Case studies- Home Automation, Cities, Environment, Agriculture.	15 Lectures

- 1. Internet of Things (A hands on approach) Vijay Madisetti and Arshdeep Bagha
- 2. Designing the Internet of Things Adrian McEwen & Hakim Cassimally.
- 3. Rethinking the Internet of Things A scalable approach to connecting everything Francis Dacosta.

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) First Year Semester II Course Title: Advanced DBMS Course Code: P-LAC-229 Total Lectures: 45 Max. Marks: 50

Learning Objectives:

- > To impart the concepts of Distributed and Centralized Databases.
- > To enable with the principles of Query transformation and Optimization techniques.
- > To nurture with precepts of transaction management in distributed database.
- > To discuss the concurrency control concepts in distributed systems.
- To familiarize the basics concepts of reliability and inconsistency problems of distributed database systems

Course Outcomes: After completion of this course students will be able to

- Solve transforming a global query into local query using optimizing techniques.
- Summarize the distributed transaction management principles.
- > Explain various distributed concurrency control techniques.
- Evaluate the Non-blocking Commitment Protocols

PRACTICAL LIST

- 1. Introduction SQL-SQL*Plus
 - a. My SQL Installation
 - b. Types of SQL Commands
 - c. Various Data Types
 - d. Database & Tables Creation
 - e. Key Constrains-Normalization
 - f. Update, Delete, Alter, Rename
 - g. where, In, not in, like, not like, distinct, is null, is not null
- 2. Working with sorting, grouping & Aggregate functions
 - a. Order by Clause
 - b. Group by Clause, Having Clause
 - c. Single Row Functions: character, number, date etc.
 - d. Multi-row Functions
- 3. Working with Table Join
 - a. Cartesian Product
 - b. ANSI Style
 - c. Using Clause
 - d. Theta Join
 - e. Outer Join- Left, Right, Full Outer Join
 - f. Self-join
 - g. Set Operators Union, Intersect, Minus

- 4. Working with Views in Oracle 10g
- 5. Programs on PL/SQL Block in ORACLE 10g
 - a. Simple PL/SQL Block
 - b. Looping in PL/SQL Block
 - c. Exception Handling in PL/SQL
- 6. Programs on Trigger, Procedure, Cursor in Oracle 10g
 - a. Row Triggers and Statement Triggers
 - b. Before and After Triggers
 - c. Instead Of Triggers
 - d. Implicit cursors
 - e. Explicit cursors
 - f. Procedures –In, Out, In Out
- 7. Working with Database Transactions in MySQL/ORACLE/ PostgreSQL
 - a. Set transaction
 - b. Begin transaction
 - c. End transaction
 - d. Commit, Rollback, Savepoint
- 8. Program on Distributed Transactions in PostgreSQL

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) First Year Semester II Course Title: Compiler Design

Course Code: P-LAC-230	
Total Lectures: 45	

Credits: 2 Max. Marks: 50

Learning Objectives:

- To get working knowledge of the major phases of compilation, like lexical analysis, parsing, semantic analysis and code generation.
- To use the formal attributed grammars for specifying the syntax and semantics of programming languages.
- To understand the structure of a compiler, and how the source and target languages influence various choices in the design
- > To learn and use tools for compiler construction.

Course Outcomes: After completion of this course students will be able to

- > To solve problem of parsing and compiling.
- > Design and develop simple compiler.
- > Use compiler tools in basic, concurrent, distributed and embedded environments.
- ➢ Generate and optimize the code.

- 1. Tokenizing a file using C.
- 2. Implementation of Lexical Analyzer using Lex Tool.
- 3. Study the LEX and YACC tool and evaluate an arithmetic expression with parentheses, unary and binary operators using Flex and Yacc (CALCULATOR).
- 4. Using JFLAP, create a DFA from a given regular expression.
- 5. Create LL(1) parse table for a given CFG and hence Simulate LL(1) Parsing.
- 6. Using JFLAP create SLR(1) parse table for a given grammar. Simulate parsing and output the parse tree proper format.
- 7. Write functions to find FIRST and FOLLOW of all the variables.
- 8. Read a regular expression in its standard form and find out an E-NFA from it. Need to use adjacency list data structure of graph to store NFA. Thompson's construction needs to be used too.
- 9. Read a regular expression in standard form and check its validity by converting it to postfix form. Scan a string and check whether the string matches against the given regular expression or not.
- 10. Design predictive parser for the given language.
- 11. Implementation of shift reduce parsing algorithm.
- 12. Convert the BNF rules into YACC form and write code to generate abstract syntax tree.

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) First Year Semester II Course Title: Web Programming

Course Code: P-LAC-231 Total Lectures: 45 Credits: 2 Max. Marks: 50

Learning Objectives:

- > ASP.NET helps students to create their own web applications.
- > To design & develop static and dynamic websites.
- > To develop web application with validation controls
- > To train the students in creating dynamic web pages using ASP.NET.
- > To facilitate the students, develop real time applications using database.

Course Outcomes: After completion of this course students will be able to

- > Develop web pages using HTML, CSS and JavaScript.
- > Create a Web form with server controls.
- Separate page code from content by using code-behind pages, page controls, and components.
- > Display dynamic data from a data source by using Microsoft ADO.NET and data binding.
- > Build web applications using ASP.NET and MySQL database / MS-Access.

- 1. Introduction and Installation of Visual Studio.
- 2. Program for variables declaration and operators in Asp.net.
- 3. Program for Decision Making, Loops and Function in Asp.net.
- 4. Program to demonstrate Label, TextBox, Button Control.
- 5. Program to demonstrate ListBox, ComboBox Control.
- 6. Program to demonstrate Dropdown list and Calendar Control.
- 7. Program to design a Masterpage.
- 8. Program for embedding CSS in Asp.net.
- 9. Program to demonstrate Exception Handling in Asp.Net.
- 10. Program to demonstrate Compare validator, Required Filed Validator.
- 11. Program to demonstrate Range Validator and Custom Validator.
- 12. Program on Cookies.
- 13. Program on Session.
- 14. Program to demonstrate View State and Query String.
- 15. Database Connectivity.

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur M. Sc. (Computer Science) First Year Semester II Course Title: Internet of Things

Course Code: P-LAC-232 Total Lectures: 45 Credits: 2 Max. Marks: 50

Learning Objectives:

- > To introduce the concepts of Internet of Things.
- > To impart the knowledge on IoT application areas.
- To introduce the IoT business process models, design technology for Connected Devices.
- To enable the students, learn the effective usage of device connectivity and web connectivity models.

Course Outcomes: After completion of this course students will be able to

- > Demonstrate the need of IoT in the computing world.
- ➢ Identify the Business Process models of IoT.
- > Analyze the data storage and acquisition mechanisms for real time applications.
- Design IoT based prototypes.

- 1. Install Virtual box and Raspberry Pi to perform actions of Raspberry Pi.
- 2. Starting Raspbian OS, familiarizing with raspberry pi components and Interface, connecting to ethernet, monitor, USB.
- 3. Displaying different LED patterns with Raspberry Pi.
- 4. Displaying Time over 4-Digit 7-Segment Display using Raspberry Pi.
- 5. Control Raspberry Pi via Telegram Messenger.
- 6. Setting up Wireless Access Point using Raspberry Pi.
- 7. Fingerprint Sensor interfacing with Raspberry Pi.
- 8. GPS Module Interfacing with Raspberry Pi.
- 9. IOT based Web Controlled Home Automation using Raspberry Pi
- 10. Visitor Monitoring with Raspberry Pi and Pi camera
- 11. RFID interfacing with Raspberry Pi.
- 12. Building Google Assistant with Raspberry Pi.
- 13. Installing windows 10 IoT core on Raspberry Pi.
- 14. Light on LED through Python Program using Raspberry Pi
- 15. Get input from switches and switch on corresponding LEDs controlling on LEDs by button.

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science

M. Sc. (Computer Science) First Year Semester II

Seminar II

Course Code: P-SEM-234

Credits: 2

Max. Marks: 25

Learning Objectives:

- > To expand the subject knowledge
- > To Improve the communication & Presentation skills

Course Outcomes: After completion of this course students will be able to

- > Express their knowledge on the given topic in a well manner
- > Present information in a compelling, well-structured, and in a logical sequence.

Steps to Complete the Seminar

- 5. Allotment of Seminar Topic
- 6. Preparation of Presentation & Delivery of Seminar (Minimum 30 Minutes)
- 7. Preparation of Seminar Report
- 8. Final Presentation & Submission of Seminar Report